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1 Introduction

The code presented here was developed to take data from a CMOS camera module connected to a StrongARM
microprocessor running GNU/Linux. The concepts demonstrated include:

• Reading from hardware connected as a static/flash memory;

• Communicating with hardware using I2C at the device driver level;

• Handling interrupts generated by external hardware.

Much of the code here is contextually, though largely not hardware, dependent on the project for which it
was developed.

2 Device Driver

There are generally three types of device driver under Linux; char, block and network drivers. A char

driver is the simplistic byte-shifting type and it this type that is used here. A char device is accessed in
the traditional Unix way through an entry in the /dev directory. The driver must provide a standard set
of functions which will correspond to operations such as open, read, ioctl all of which happen to the file
descriptor corresponding to the open /dev device. Taking the following code for example:

Listing 1: Accessing a device, via it’s driver, from userland.
int fd;

unsigned char ucBuff[PREDEFINED_SIZE ];

/* open the device */

fd = open("/dev/my_device", O_RDWR );

/* read back some data from it */

read(fd, ucBuff , PREDEFINED_SIZE );

/* send some device specific commands */

ioctl(fd, MOVE_ROBOT_ARM , NULL);

...

2.1 Developing as a Module

While it may, in many cases, be desirable to provide static-kernel code for a driver, during development
recompiling and rebooting to test the code every time is time-consuming. It is therefore highly desirable to
develop the code as a module. 1

When writing a driver, standard C function calls are not available, (i.e. no glibc). Only functions provided
by the kernel may be used. To see a list of all the functions provided by the kernel, examine /proc/ksyms.
The output format when making the module is standard ELF object code, all the linking happens at run time.

To load a module, i.e. make it available to run use the insmod command. To check which modules are loaded
use the lsmod command. To unload a module run the rmmod command.

1Note also that it is preferable to develop at the console (i.e. not X), otherwise output from the driver will be suppressed and
only available in the log files.
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2.2 Module Skeleton

When a module is loaded and unloaded, the functions init module and cleanup module respectively, are
called. The names of these functions are by default those specified, however it is possible to specify the names
corresponding to these functions using the module init and module exit macros. For example:

Listing 2: Skeleton module code.
/* tell the kernel what the init and cleanup functions are */

#include<linux/config.h>

#include<linux/module.h>

#include<linux/kernel.h>

#ifdef MODVERSIONS

#include < linux/modversions.h>

#endif

#define DRIVER_NAME "ov7620_module"

module_exit(ov7620_cleanup );

module_init(ov7620_init );

/*

* This gets called when the module is loaded.

*/

int ov7620_init(void)

{

printk(KERN_INFO "%sÃloaded .", DRIVER_NAME );

}

/*

* This gets called when the module is unloaded.

*/

void ov7620_cleanup (void)

{

...

}

Note the use of the printk function, a function exported by the kernel which behaves like printf.

2.2.1 Module Versions

Once compiled, embedded in the object code is a version number. This version number is the same as the
source of the kernel, so the version of the kernel that the module must run under, must be compiled from the
same source that the module is based on. A comprehensive discussion of versioning issues can be found in [1].
The file linux/modversions.h must exist, to create this run make dep on the kernel sources. If make dep

fails then the chances are this file will not exist and the symbol names in the module won’t match the kernel.
To fix make dep involved (in this case) editing a variety of Makefiles throughout the kernel source tree.

2.2.2 Compiling the Code

KERNDELDIR =/home/gmr/kernels/linux

CC=/ skiff/local/bin/arm-linux-gcc
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LD=/ skiff/local/bin/arm-linux-ld

NM=/ skiff/local/bin/arm-linux-nm

include /home/gmr/kernels/linux /. config

CFLAGS+ =-c -Wall - D__KERNEL__ - DMODULE -I/home/gmr/kernels/linux/include -O

LFLAGS+=

ifdef CONFIG_SMP

CFLAGS+ =- D__SMP__ -DSMP

endif

all: ov7620.o

$(NM ) > ./ syms

clean:

rm ov7620.o

rm syms

ov7620.o: ov7620.c

$(CC) $(CFLAGS ) ov7620.c -o ov7620.o

This shows the basic Makefile requirements to build the module.

2.3 How the Driver Works

Figure 2.3 shows how the driver works. Once the driver and camera have been initialized, nothing happens
until the renderer program is run. Once the renderer is run it enables an interrupt in the camera driver, as
soon as this interrupt happens data is copied from the camera to the driver’s buffer. The interrupt is then
disabled and the renderer program converts the data to a real color space and plots it. Once it has been
plotted the interrupt is re-enabled. In order for the image to be stable, because of the slow FIFO hardware,
the frame rate had to be reduced to about 2FPS.
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Figure 1: A flow chart showing the general operation of the driver.
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2.4 Camera Data Format

The Omnivision OV7620 camera module has the following features that were made use of in this project:

• Variable resolution up to 640x480.

• Full color capture, output in YUV 4:2:2 format.

• Output rate at variable rates, up to 60FPS.

• 16-bit interface bus.

• I2C interface for configuration registers.

Data comes off the camera in a raster format, i.e. line after line in vertical sequence. Although the module
can output a variety of formats, the YUV 4:2:2 format was chosen. In this mode the camera outputs a
luminance (Y) value for every pixel that is captured. The chrominance values (U and V) are shared for each
pair of pixels. For example, pixel(0, 0) has data (Y0, U0,1, V0,1) and pixel(0, 1) has (Y1, U0,1, V0,1). This is
illustrated below:

Clock Pulse 0 1 2 3 . . .
Y (lower byte) Y0 Y1 Y2 Y3 . . .
UV (upper byte) U0,1 V0,1 U2,3 V2,3 . . .

The camera also provides a variety of synchronization signals so that the master device can identify when the
data is valid.:

• VSYNC is asserted at the start of every frame.

• HREF is asserted at the start of every row of data (e.g. there will be 480 HREF pulses per frame).

• A synchronization word of value 0x8010 is sent at the start and end of every row of data.

Once the data comes off the camera it needs to be converted from YUV to RGB. The conversion formula is
shown in (1).

R = U + Y

B = V + Y

G = 1.11Y − 0.34R − 0.12B (1)

Doing this as a floating point operation is very slow. An integer conversion method was used.

2.5 Interrupt Handlers

Interrupt service routines (ISR) are called when the specify interrupt they are assigned to is triggered. In
this case of this driver the only interrupt used is the VSYNC signal. Every time a frame is ready the camera
generates a VSYNC interrupt.

Listing 3: Installing an interrupt handler.

/* bottom half for VSYNC ISR */

DECLARE_TASKLET(ov7620_copy , /* name of tasklet , arbitrary */

ov7620_mem_transfer , /* tasklet function */

0); /* flags, leave as 0 */

/*
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* This is the ’open’ function for the /dev/omni node.

*/

static int ov7620_open(struct inode* pinode , struct file* pfile)

{

MOD_INC_USE_COUNT;

/* Setup all the GPIO for interrupt input, FIFO reset and LCD output:

* GPIO 21 is VSYNC from OV7620 interrupt ( rising-edge).

* GPIO 11 is FIFO reset ( active low).

* GPIO 20 is camera reset . */

GPDR = GPIO_GPIO11 | GPIO_GPIO20 | GPIO_GPIO2 |

GPIO_GPIO3 | GPIO_GPIO4 | GPIO_GPIO5 |

GPIO_GPIO6 | GPIO_GPIO7 | GPIO_GPIO8 |

GPIO_GPIO9;

set_GPIO_IRQ_edge(GPIO_GPIO21 , GPIO_RISING_EDGE );

/* request interrupt for VSYNC */

if( request_irq(IRQ_GPIO21 , & ov7620_interrupt , 0, NULL, NULL ) != 0 ) {

printk(KERN_WARNING "Couldn’tÃgetÃIRQ.");

return -1;

}

return 0;

}

/*

* This is triggered on the VSYNC interrupt , it resets the FIFO and

* then calls the tasklet to do the real hardwork.

*/

static void ov7620_interrupt (int irq, void* dev_id , struct pt_regs * pregs)

{

/* reset the FIFO so that it buffers the video data */

reset_fifo ();

tasklet_schedule (& ov7620_copy );

}

/*

* This is where the frame is copied over from the FIFO buffer to

* our buffer.

*/

static void ov7620_mem_transfer (unsigned long unused)

{

...

}

The ISR is broken into two parts, the upper half (the real ISR) and the bottom half. The bottom half is
executed at a lower priority, this is essential so that the CPU does not become tied up. In the upper half of
an interrupt handler, for example, it would not be desirable to execute code that took 5s, because of the need
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to deal with other IRQs.

It is also useful to enable and disable a particular IRQ. In this case, for example, the VSYNC IRQ was disabled
by the read function, so that the frame data could be copied to userland without it being overwritten by the
next frame. For example:

Listing 4: Enabling and disabling IRQs.
disable_irq(IRQ_GPIO21 );

/* work that needs to be done before we can take another frame */

...

enable_irq(IRQ_GPIO21 );

There are flags that can be passed to request irq to stipulate that it should be run without other interrupts.
More information is available in [1].

2.6 Reading from the Hardware

In this case, the cameras was connected via two FIFOs and several latches to static memory bank 3. Accessing
the camera involves reading from the memory at this location. To read an entire frame involves reading from
the same location 640x480x(6/4) times.

Before the memory can be accessed and address needs to be mapped from the physical address (in this case
0x19000000) to a virtual address that the kernel understands. This is shown in Listing 5.

Listing 5: Mapping from physical to virtual addresses.

#define CAMERA_BASE 0 x19000000

/* this is the base address for all operations */

static void* g_io;

/*

* This gets called when the module is loaded.

*/

int ov7620_init(void)

{

...

/* get the virtual address from the physical address */

g_io = ( void*) ioremap(CAMERA_BASE , 2);

...

}

/* wrapper function for reading data */

inline static unsigned long ov7620_readw(long lunused)

{

/* check that the FIFO is not empty before we read the data */

while ( ( GPLR & GPIO_GPIO14 ) == 0 );

return readw(g_io);

}
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Accessing the device is theoretically possible simply by indexing the pointer, e.g. myByte = g io[0]; but
this is not good practice. Instead it is better to use one of a variety of functions, of which readw() was used
in this case. In this driver this function was wrapped by the function named ov7620 readw() so that the
data from the FIFO is guaranteed to be from the camera.

When accessing a device, if repeated calls are made to readw() the so called ’DMA starvation’ effect may
occur, the result being that LCD image jitters. More on this can be found on the ARM Linux mailing lists.

2.7 Accessing the Device via I2C

The kernel I2C system requires the following options to be set when compiling on the SA1100:

• CONFIG I2C

• CONFIG I2C ALGOBIT

• CONFIG I2C BIT SA1100 GPIO

• CONFIG I2C CHARDEV

• CONFIG I2C PROC

• CONFIG L3

• CONFIG BIT SA1100 GPIO

The driver developed in this project is partly based on the stock kernel driver for the USB-wrapped OV7620
camera module used in some webcams.

The kernel I2C support works by populating several structures and calling several functions. After this, and
after some initial communication with the device, the driver can access the device at any point using simple
send and receive functions.

2.7.1 Registering the I2C Functionality

Listing 6: Initializing the basic structure of I2C .

struct i2c_driver ov7620_i2c_driver = {

.name = DRIVER_NAME,

.id = I2C_DRIVERID_OV7620 ,

.flags = I2C_DF_NOTIFY,

.attach_adapter = ov7620_i2c_attach,

.detach_client = ov7620_i2c_detach,

};

Once this structure has been declared and populated, the initialization function of the driver calls the
i2c add driver and passes it the address of this structure.

The i2c driver structure’s members that were used as follows, more documentation can be found in
$KERNEL SRC/Documentation/i2c/writing-clients:

• name is a descriptive string, arbitrary.

• id is the I2C ID number, in this case the one from the stock kernel driver was used.

• flags should be left as shown (apparently).
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• attach adaptor is the address of a function that is called when the driver is added, this does much of
the I2C initialization.

• detach client is the address of the cleanup function.

2.7.2 The I2C attach Function

This function is called when the I2C functionality is registered, it does the initial probing and populates an
i2c client structure.

Listing 7: Initializing an i2c client structure.

static struct i2c_client client_template = {

.id = -1,

.driver = &ov7620_i2c_driver,

};

/*

* Create a client and find the camera on it, largely

* stolen from OV511 driver.

*/

static int ov7620_i2c_attach(struct i2c_adapter *adap)

{

int rc = 0;

struct i2c_client *c;

/* create structure to represent ov7620 as client */

c = ( struct i2c_client *) kmalloc(sizeof *c, GFP_KERNEL );

if (!c)

return - ENOMEM;

/* copy this to our globally defined i2c_client client_template */

memcpy(c, & client_template , sizeof *c);

c-> adapter = adap;

strcpy(c->name, DRIVER_NAME );

/* set the I2C address of the camera */

c->addr = OV7620_SID;

/* detect the camera using a function specific to this camera */

rc = ovcamchip_detect (c);

if (rc < 0) {

printk(KERN_WARNING "\ nCameraÃnotÃfound.");

return -EIO;

}

/* attach the client */

i2c_attach_client(c);
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return 0;

}

Listing 8: Detecting the camera I2C support.
/* this stolen ( largely ) from OV511 driver by Mark McClelland */

static int ovcamchip_detect (struct i2c_client *c)

{

int i, success , rc;

unsigned char high, low, val;

/* Reset the chip */

ov_write(c, 0x12 , 0x80);

/* Wait for it to initialize */

set_current_state(TASK_UNINTERRUPTIBLE );

schedule_timeout (1 + 150 * HZ / 1000);

for (i = 0, success = 0; i < I2C_DETECT_RETRIES && ! success ; i++) {

if ( ov_read(c, GENERIC_REG_ID_HIGH , & high ) >= 0) {

if ( ov_read(c, GENERIC_REG_ID_LOW , &low ) >= 0) {

if (high == 0 x7F && low == 0 xA2 ) {

success = 1;

continue;

}

}

}

/* Reset the chip */

ov_write(c, 0 x12 , 0x80);

/* Wait for it to initialize */

set_current_state(TASK_UNINTERRUPTIBLE );

schedule_timeout (1 + 150 * HZ / 1000);

/* Dummy read to sync I2C */

ov_read(c, 0x00 , & low);

}

if (! success)

return -EIO;

/* Detect chip (sub)type */

rc = ov_read(c, GENERIC_REG_COM_I , & val);

if( rc < 0 ) {

printk(KERN_WARNING "\ nError ,Ã couldn’tÃfindÃcameraÃonÃI2CÃbus.");

return -EIO;

}

if( (val & 3) == 0 ) {

/* success */

/* printk(KERN_WARNING "\ nFound OV7620 camera OK.");*/
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return 0;

} else {

printk(KERN_WARNING "\ nError ,Ã cameraÃrespondedÃbutÃnotÃOK.");

return -EIO;

}

}

2.7.3 The I2C detach Function

Listing 9: The function called when the I2C support is removed.
static int ov7620_i2c_detach(struct i2c_client *c)

{

g_pi2c = NULL;

i2c_detach_client(c);

kfree(c);

return 0;

}

2.7.4 Communicating with the Camera via I2C

Writing data to the camera is achieved with the i2c master send function. The first parameter is the
i2c client* that was initialized in Listing 7, the second parameter is an array of bytes, the first being the
address of the register, the second the value to put in the register and any additional data, the third parameter
is the length of the array. For example:
i2c_master_send(g_pi2c , & ov7620_settings[n], 2);

Reading data back from the camera is achieved with the i2c master recv function. This has the same
parameters as the first function. In the case of this camera, it is necessary to write to a register before reading
from it, as it is the write command that sets the address. For example:
i2c_master_recv(g_pi2c , & ov7620_settings[n], 1);
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3 The Userland Rendering Program

Listing 10: The rather messy rendering program.
#include < unistd.h>

#include < stdio.h>

#include < fcntl.h>

#include < linux/fb.h>

#include <sys/mman.h>

#include <math.h>

#define FUDGE601 16

#define limit(x) (x<0 ? 0 : x>255 ? 255 : x)

struct fb_var_screeninfo vinfo;

struct fb_fix_screeninfo finfo;

/*

* Taken from VLSI Vision Ltd’s driver.

*

*/

static inline void YUVPixelToRGB24(unsigned char* YUVPixel,

unsigned char* RGBPixel)

{

int yval, uval, vval, yval2;

int guv, rv, bu;

static int value = 0;

yval = * YUVPixel ++ - FUDGE601;

uval = * YUVPixel ++;

yval2 = * YUVPixel ++ - FUDGE601;

vval = * YUVPixel ++;

uval -= 128;

vval -= 128;

yval = 19 * yval;

yval2 = 19 * yval2;

bu = (uval <<5);

guv = (- 6* uval - 13* vval);

rv = 26* vval;

*RGBPixel ++ = ( unsigned char)limit ((( yval + bu )>>4) );

*RGBPixel ++ = ( unsigned char)limit ((( yval + guv )>>4));

*RGBPixel ++ = ( unsigned char)limit ((( yval + rv )>>4) );

*RGBPixel ++ = ( unsigned char)limit ((( yval2 + bu )>>4) );

*RGBPixel ++ = ( unsigned char)limit ((( yval2 + guv )>>4));

*RGBPixel ++ = ( unsigned char)limit ((( yval2 + rv )>>4) );

value ++;

if( value > 255 )
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value = 0;

return;

}

static inline u_int32_t pack_pixel(unsigned char* prgb)

{

u_int32_t tmp;

tmp = ((( prgb [0] >> (8- vinfo.red.length )) << vinfo.red.offset ) +

((prgb [1] >> (8- vinfo.green.length )) << vinfo.green.offset ) +

((prgb [2] >> (8- vinfo.blue.length )) << vinfo.blue.offset ));

return tmp;

}

int main()

{

int fbfd = 0;

struct fb_cmap cmap;

unsigned long int screensize = 0;

char *fbp = 0;

unsigned int x = 0, y = 0;

long int location = 0;

u_int32_t c;

int nIndex;

int fd_cam;

unsigned char* pframe;

unsigned char yuv_pixels [4];

unsigned char rgb_pixels [6];

unsigned char y1;

unsigned char y2;

// Open the file for reading and writing

fbfd = open("/dev/fb0", O_RDWR );

if (! fbfd ) {

printf("Error :Ã cannotÃopenÃframebufferÃdevice .\n");

exit (1);

}

printf("TheÃframebufferÃdeviceÃwasÃopenedÃsuccessfully .\n");

// Get fixed screen information

if (ioctl(fbfd, FBIOGET_FSCREENINFO , & finfo )) {

printf("ErrorÃreadingÃfixedÃinformation .\n");

exit (2);

}

// Get variable screen information

if (ioctl(fbfd, FBIOGET_VSCREENINFO , & vinfo )) {

13



printf("ErrorÃreadingÃvariableÃinformation .\n");

exit (3);

}

printf("%dx%d,Ã% dbpp\n", vinfo.xres, vinfo.yres, vinfo.bits_per_pixel );

// Figure out the size of the screen in bytes

screensize = vinfo.xres * vinfo.yres * vinfo.bits_per_pixel / 8;

// Map the device to memory

fbp = ( char *) mmap (0, screensize , PROT_READ | PROT_WRITE , MAP_SHARED,

fbfd , 0);

if (( int)fbp == -1) {

printf("Error :Ã failedÃtoÃmapÃframebufferÃdeviceÃtoÃmemory .\n");

exit (4);

}

printf("TheÃframebufferÃdeviceÃwasÃmappedÃtoÃmemoryÃsuccessfully .\n");

x = 0; y = 0; // Where we are going to put the pixel

fd_cam = open("/dev/omni", O_RDWR );

if (0 == fd_cam ) {

printf("\ nErrorÃopeningÃcamera .");

exit (4);

}

pframe = ( unsigned char*) malloc(sizeof(unsigned char )*640*480*3);

if( NULL == pframe ) {

printf("\ nCouldn’tÃallocateÃframeÃmemory .");

exit (4);

}

while (1) {

while ( read(fd_cam , pframe , 640*480*3) <= 0 )

usleep (100);

nIndex = 0;

for ( y = 0; y < 480; y++ )

for ( x = 0; x < 640; ) {

YUVPixelToRGB24 (& pframe[nIndex ], rgb_pixels );

nIndex +=4;

/* plot pixel 1 */

c = pack_pixel (& rgb_pixels [0]);
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/* calculate position */

location = (x+vinfo.xoffset ) * 2 +

(y+vinfo.yoffset ) * finfo.line_length;

x++;

/* output at that position */

*(( u_int16_t *)( fbp + location )) = ( u_int16_t)c;

/* plot pixel 2 */

c = pack_pixel (& rgb_pixels [3]);

/* calculate position */

location = (x+vinfo.xoffset ) * 2 +

(y+vinfo.yoffset ) * finfo.line_length;

x++;

/* output at the that position */

*(( u_int16_t *)( fbp + location )) = ( u_int16_t)c;

}

}

munmap(fbp, screensize );

close(fd_cam );

close(fbfd);

return 0;

}
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