
GESBC-9302 Development With a USB Drive

Paul H. Muller - Documatrix
www.documatrix-usa.com ulx@linuxmail.org

Disclaimer: The programs and procedures described here have been tested and
are thought to be accurate but are offered as is, with no warranty or guarantee.

Introduction

The GESBC-9302 system includes two USB ports and Linux commands to mount
and access them. USB “memory stick” drives are available at low cost and can be
used in conjunction with the GESBC-9302 to add non-volatile storage to your
embedded system. A USB drive can also be used as an inexpensive development
platform that allows the user to make permanent changes and additions to the
GESBC-9302 file system rapidly and easily.

This article describes how to use a USB drive as a host for the GESBC-9302 file
system and how to modify the Redboot loading sequence to load this file system
directly from the USB drive. Cross-compiled programs from a Debian development
PC can quickly become part of the GESBC-9302 system on power-up without the
need to burn a new file image into GESBC-9302 flash.

USB Drives

USB drives are widely available in a variety of memory denominations. I bought
the lowest cost “memory stick” I could find and paid $13 for 128 Mbytes. The drive
was not even formatted; I could not mount it on any PC to test it until I plugged it
into a Win XP machine, which helpfully offered to format it. So if you have or buy a
USB memory drive, be sure to format it to FAT32 as this is the only Windows
format Linux can recognize.

Mounting and Formatting USB Drives

Once your USB drive is formatted for the FAT32 file system it can be mounted and
tested on the GESBC-9302. To do this, use the following command:

 mount –t vfat /dev/sda1 /mnt

Now you can copy files to the USB drive just as if it were part of the Linux system.

Because we want to use this with the GESBC-9302, it will be more compatible to
re-format the USB drive to a standard Linux ext2 file system. To do this, the USB
drive must first be partitioned then re-formatted to ext2.

Partitioning and Formatting the USB Drive

In order to place the ext2 file system on the USB drive, the drive must first be re-
partitioned. Do this from the GESBC-9302, using the fdisk command as follows:

 fdisk /dev/sda1

The fdisk program itself has a series of commands used to view or set partitions on
the USB drive. Entering m will give a list of fdisk commands.

The USB drive as formatted with VFAT will have existing partitions that must first
be erased. This is done with fdisk command d. My USB drive apparently had 4
VFAT partitions, so each one had to be deleted in turn. fdisk gave a response
each time the d command was used.

After deleting the VFAT partitions, I ran the p command to verify the state of the
USB drive. The report printed by fdisk looked like the following:

Disk /dev/sda1: 126 MB, 126959616
4 Heads, 61 sectors/track, 1016 cylinders
Units = cylinders of 244 * 512 = 124928

The next task is to add a partition with fdisk command n:

fdisk requests that you specify a primary or an extended partition p or e. Choose
p for primary. fdisk next asked for the starting cylinder; I entered 1. fdisk then
asked for the last cylinder and I entered 1016.

A quick check using the p command verified that the entire USB drive was to be a
single partition.

The last step was to use the fdisk w command to write the new partition to the
drive. After a few seconds the process was complete and fdisk terminated.

Creating the ext2 File System on the USB Drive Using the GESBC-9302

After the USB drive is partitioned, we must create a Linux ext2 file system on it. To
create the ext2 file system, use the following command:

 mke2fs /dev/sda1

The screenshot below shows the GESBC-9302 response:

Setting Up A File System on the USB Drive

Now that the USB drive is operational, we can put a copy of the GESBC-9302 file
system on the USB drive. In a previous article “Getting Started with the GESBC-
9302” a Debian development system was described. We can use this system in
conjunction with the Glomation CD to capture a copy of the GESBC-9302 file
system into the USB drive.

mke2fs /dev/sda1
mke2fs 1.34 (25-Jul-2003)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
31104 inodes, 123984 blocks
6199 blocks (5.00%) reserved for the super user
First data block=1
16 block groups
8192 blocks per group, 8192 fragments per group
1944 inodes per group
Superblock backups stored on blocks:
 8193, 24577, 40961, 57345, 73729

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 29 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
~ # mount /dev/sda1 /mnt
~ # cd /mnt
/mnt # ls
lost+found
/mnt #

Putting the GESBC-9302 File System on the USB Drive

The first step is to copy the file ramdisk.gz from the Glomation CD to the
/home/arm directory on the Debian development PC. You can find ramdisk.gz on
the CD at /Linux/GESBC-9302/. To unzip the file, use the following command:

 gzip –d ramdisk.gz

There should now be a file named ramdisk in the Debian /home/arm directory.

The next step is to power up the GESBC-9302 and mount the USB drive:

 mount /dev/sda1 /mnt

Next, we make a special directory on the USB drive to hold the ramdisk file. I
called this directory armdisk, but you can use something better:

 mkdir /mnt/armdisk

From the top directory in the GESBC-9302, use the ftpget command to copy the
ramdisk file from the Debian system at IP 192.168.0.125 (note user name arm and
password gesbc must exist on the Debian system):

ftpget –u arm –p gesbc 192.168.0.125 ramdisk /mnt/armdisk/ramdisk

Now a copy of the ramdisk file should reside on the USB drive at /mnt/armdisk.

Next, we mount the ramdisk file as a loop device:

 mount –o loop /mnt/armdisk/ramdisk /mnt/armdisk/

Next, cd to /mnt/armdisk and view the contents. You should see a complete copy
of the GESBC-9302 file system.

Now (from /mnt/armdisk/) we simply copy the loop-mounted file system into the
USB drive at /mnt:

 cp –ra * /mnt/

And now we have the complete GESBC-9302 file system permanently copied to
the USB drive. You can change or add files and they will remain in the USB drive
after power-down.

Note: Be sure to umount the USB drive prior to powering down.

Booting from the USB Drive

Now that the entire GESBC-9302 file system exists on the USB drive, we can
interrupt the normal Redboot process and direct the GESBC-9302 to load its file
system from its USB drive. To do this, we power the board down and re-power
with the GESBC-9302 connected to Hyper-Terminal.

To interrupt the Redboot loading sequence, press ^C (Control C). To manually
complete the loading process, first load the Linux zimage:

 fis load zimage

Next, load the file system on the USB drive:

 exec –c “root=/dev/sda1 console=ttyAM0”

Don’t forget to include the quotes. If successful, the GESBC-9302 will load
normally and you can activate the console as usual.

Modifying the Redboot Script

We can test the file system installed on the USB drive by interrupting the Redboot
process with ^C on startup. The Redboot script can be modified, however, so that
the GESBC-9302 always comes up using the USB drive file system.

The Redboot loader has an extensive series of commands, documented at
www.ecoscentric.com. To view the Redboot default script for the GESBC-9302,
capture the text that scrolls by on Hyper-Terminal as the system comes up.

The boot-up script can be seen in the lines starting with Redboot >, as shown
below:

RedBoot> fis load ramdisk
RedBoot> fis load zImage
RedBoot> exec -r 0x800000 -s 0x300000

In the default script, Redboot first loads the ramdisk image from the GESBC-9302
flash, then the Linux image. The script finally executes Linux starting at a ram
address 0x800000 to begin the Linux booting process.

Below is a screenshot of the normal GESBC-9302 booting process showing the
Redboot scripting:

The script can be edited so that the file system is loaded from the USB drive
instead of from the GESBC-9302 flash. The Redboot commands will be the same
as those used when we interrupted the process with ^C:

 fis load zimage

exec –c “root=/dev/sda1 console=ttyAM0”

To edit the Redboot script, first interrupt the boot process with ^C on power-up. To
view the existing fconfig setup using the following command:

 fconfig –l

This shows all of the default Redboot parameters, including the script. We don’t
want to change anything but the scripting, so listing and saving the default
configuration is a good idea in case something goes wrong.

-------- Normal GESBC-9302 Boot-up Sequence ------------------------

+Ethernet eth0: MAC address 00:00:00:00:50:03
IP: 192.168.0.111/255.255.255.0, Gateway: 192.168.90.1
Default server: 0.0.0.0, DNS server IP: 0.0.0.0

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version v2_0 - built 20:59:09, Nov 10 2005

Platform: Cirrus Logic EDB9302 Board (ARM920T) Rev A
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000-0x02000000, 0x00041e48-0x01fdd000 available
FLASH: 0x60000000 - 0x61000000, 128 blocks of 0x00020000 bytes each.
== Executing boot script in 1.000 seconds - enter ^C to abort
RedBoot> fis load ramdisk
RedBoot> fis load zImage
RedBoot> exec -r 0x800000 -s 0x300000
Using base address 0x00080000 and length 0x000b3eb0
Uncompressing Linux.. done,

The –l (list) option displays the entire default configuration, as shown in the
screenshot below:

To change the configuration, enter fconfig. You will be asked a series of
questions by Redboot covering all of the elements in the configuration. The
existing configuration is the default value for any choice, and can be kept by
simply pressing the Enter key.

To change the script, enter true to the Run script at boot query. Enter each line of
the new script and then end the script with an empty line. You will be prompted to
change the other configuration parameters, but press Enter each time to accept
the existing default value.

== Executing boot script in 1.000 seconds - enter ^C to abort
^C
RedBoot> fconfig -l
Run script at boot: true
Boot script:
.. fis load ramdisk
.. fis load zImage
.. exec -r 0x800000 -s 0x300000

Boot script timeout (1000ms resolution): 1
Use BOOTP for network configuration: false
Gateway IP address: 192.168.90.1
Local IP address: 192.168.0.111
Local IP address mask: 0.0.0.0
Default server IP address: 0.0.0.0
DNS server IP address: 0.0.0.0
Set eth0 network hardware address [MAC]: true
eth0 network hardware address [MAC]:
0x00:0x00:0x00:0x00:0x50:0x03
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false

The sequence is shown in the following screenshot:

When fconfig is finished you will be asked to update the new configuration in flash.
Enter y. When Redboot finishes writing to flash, power-down the GESBC-9302
and power-up again, observing the process in Hyper-Terminal.

If successful, Linux will boot and the file system will now be located on the USB
drive instead of the ramdisk image. Now changes and additions will stay in the
non-volatile memory of the USB drive during the development of your programs
and custom GESBC-9302 configuration.

RedBoot> fconfig
Run script at boot: true
Boot script:
.. fis load ramdisk
.. fis load zImage
.. exec -r 0x800000 -s 0x300000
Enter script, terminate with empty line
>> fis load zImage
>> exec -c "root=/dev/sda1 console=ttyAM0"
>>
Boot script timeout (1000ms resolution): 1
Use BOOTP for network configuration: false
Gateway IP address: 192.168.90.1
Local IP address: 192.168.0.111
Local IP address mask:
Default server IP address:
DNS server IP address:
Set eth0 network hardware address [MAC]: true
eth0 network hardware address [MAC]: 0x00:0x00:0x00:0x00:0x50:0x03
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x60fc0000-0x60fc1000: .
... Program from 0x01fde000-0x01fdf000 at 0x60fc0000: .

Booting to a File System via NFS

In a previous article “A Simple File Development System for the GESBC-9302” a
method of mounting the file system via NFS was described. The GESBC-9302 file
system can be captured to the hard drive of a Debian development PC on the LAN
so that changes and additions can be tested without having to first copy them to
the GESBC-9302.

You can modify the Redboot script so that the GESBC-9302 always looks for the
file system on the Debian PC, using the following script:

fis load zimage
exec –c “root=/dev/nfs nfsroot=192.168.0.125:/armfiles ip=192.168.0.127 console=ttyAM0”

In this example, the Debian PC is at IP 192.168.0.125 and the directory holding the
GESBC-9302 file system is /armfiles. The GESBC-9302 is assigned IP address
192.168.0.127.

Unmounting the File System

When powering down the GESBC-9302, be sure to unmount all file systems!

The USB drive file system could become corrupted from powering the GESBC-9302
Down without first unmounting. Similarly, an NFS mounted file system must be
unmounted from the GESBC-9302 prior to power down. The normal GESBC-9302
ramdisk file system does not need to be unmounted; it is simply replaced at the
next boot-up. But any Linux system with mounted file systems must unmount them
prior to shutdown to avoid file corruption.

To unmount all file systems use the following command:

 umount -a

Changing Back to a Flash File System Image

To return the GESBC-9302 to the default file image from flash, simply re-edit the
script, entering the three original lines, as shown below.

.. fis load ramdisk
.. fis load zImage
.. exec -r 0x800000 -s 0x300000

