

Install and Use the Sourcery G++ Lite Toolchain
with Eclipse in Windows for Cross Development with

ARM Single Board Computers

William Wang

ww2@andrew.cmu.edu

Class 2011
School of Computer Science
Carnegie Mellon University

Table of Contents

1 Abstract .. 1
2 Downloading and installing the Sourcery G++ Lite toolchain ... 1
3 Downloading and installing the Eclipse IDE .. 2

3.1 Creating and Building an Example Project. .. 5
3.2 Mounting a Windows folder from an ARM Single Board Computer ... 12

3.2.1 Creating a Shared Folder Under Windows Vista ... 12
3.2.2 Creating a Shared Folder Under Windows XP .. 14
3.2.3 Terminal Access to the ARM SBC ... 15
3.2.4 Mounting the shared folder ... 19

4 Appendix I: Remote debugging with gdbserver and Eclipse in Windows 23
5 Appendix II: Internet Access While on Multiple Networks in Windows .. 28

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 1 of 29
ww2@andrew.cmu.edu

1 Abstract

This tutorial is for those who wish to participate in cross development for ARM single board computers
using a Windows machine. Windows is a good choice for those unfamiliar with Linux or prefer a
graphical IDE.

2 Downloading and installing the Sourcery G++ Lite
toolchain

Download Sourcery G++ Lite ARM toolchain from
http://www.codesourcery.com/sgpp/lite/arm/portal/release858. The Windows Installer is recommended
for download. This tutorial will focus on the installer only.

Run the installation file and accept the agreement. Make changes to the default settings as necessary.
If multiple users on a single Windows machine will be participating in development, it is recommended to
change Modify PATH for current user to Modify PATH for all users. This is so that one can run the
Sourcery G++ executables in any directory without having to specify a path. Figure 1 shows the screen
which modifies this option.

Figure 1, Modifying the PATH

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 2 of 29
ww2@andrew.cmu.edu

3 Downloading and installing the Eclipse IDE

Please go to http://java.sun.com/javase/downloads/index.jsp and download and install a JDK.

The Eclipse IDE is an open source graphical IDE, which is the recommended IDE for cross developemnt.
Download it from http://www.eclipse.org/downloads/. Either the Eclipse IDE for C/C++ Developers or
Eclipse Classic should be downloaded. If only C/C++ development is planned for use with Eclipse, the
former should be installed. Otherwise, install the Classic version. Installation of Eclipse is as simple as
extracting the eclipse folder to the desired location. Click eclipse.exe to start Eclipse. On the first run,
Eclipse will ask for a location for its workspace. Choose a desired location and check the box to set the
workspace as default. On future runs, Eclipse will no longer ask for a workspace location if the box is
checked. A window like below in Figure 2 will be shown.

Figure 2, The Welcome Screen

 Click the rightmost icon to reach the workbench which is shown below in Figure 3. The

welcome screen will no longer appear in future executions of Eclipse and it will go
directly to the workbench.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 3 of 29
ww2@andrew.cmu.edu

Figure 3, The workbench

If Eclipse IDE for C/C++ Developers is not the version installed, the CDT (C/C++
Development Tools) Plug-in must be installed. Go to Help->Install New Software…. As
it shows in Figure 4, in the drop-down menu, choose Galileo. A list of categories will
appear. Expand the Programming Languages category. Locate and check Eclipse
C/C++ Development Tool. Click Next and then Finish to install the plug-in. Restart
Eclipse if asked.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 4 of 29
ww2@andrew.cmu.edu

Figure 4, Installing Plug-ins

Now Eclipse can be used for cross development for the ARM platform.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 5 of 29
ww2@andrew.cmu.edu

3.1 Creating and Building an Example Project.

To start a new C/C++ project, go to File->New->C Project or File->New->C++ Project. For project type,
expand Makefile project and choose Empty Project. For the Toolchain, choose --Other Toolchain--. An
example of this screen is shown in Figure 5. Choose a project name and click Finish.

Figure 5, Creating a new project

The workbench should look similar to the one in Figure 6. If the Includes folder does not appear under
the Example project folder when expanded, do not worry. In general, the normal case is that Example
should be empty. The Includes folder as shown in the figure is created automatically if Eclipse detects
that Cygwin GCC libraries are installed on the computer.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 6 of 29
ww2@andrew.cmu.edu

Figure 6, Example Project

The tutorial example project will be to create a program that reads a number from the command line and
prints the factorial of that number or -1 if the number is negative or would overflow a 32-bit integer. A
total of 4 files will be created for this project. They are as follows:

• main.c – The source file that will contain main()
• factorial.h – The header file that will provide macro constants and function prototype for the

factorial function
• factorial.c – A source which will contain an implementation of the factorial function
• makefile – The file needed to build the project, which will be later explained in greater detail.

To create a new file in the project, right click the Example project folder and go to New->File, New-
>Header File, or New->Source File (for makefiles, .h files, and .c files, respectively) depending on the
desired file type. Figure 7 shows the creation of main.c. Click Finish to create the new file.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 7 of 29
ww2@andrew.cmu.edu

Figure 7, Creating main.c

Figures 8, 9, 10 show what the source code for what main.c, factorial.h, and factorial.c should look like.

Figure 8, main.c

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 8 of 29
ww2@andrew.cmu.edu

Figure 9, factorial.h

Figure 10, factorial.c

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 9 of 29
ww2@andrew.cmu.edu

After writing these files, it should now be possible compile them into a program. This can be done in two
ways. One way is to just call the compiler, arm-none-linux-gnueabi-gcc, directly. The other way is to
use a makefile. However, for larger projects, calling the compiler directly becomes confusing and
complicated. Makefiles significantly simplify the compiling process and thus will be the method explained
in this tutorial.

make is a utility for automatically building executable programs and libraries by using files called
makefiles which specify how to derive the target program from its dependencies. Figure 11 shows an
example makefile to build the factorial program

Figure 11, makefile

In a makefile, one defines a set of targets, the set of dependencies for that target, and the commands
that should be run to build the target. The three targets in the makefile illustrated in Figure 11 are
all, %.o, and clean. Anything to the right of the colon is a dependency. Below the rule is the list of
commands to build the target. This list of commands must be TAB indented. The makefile in Figure
11 only has one command per target, but there can be more.

One can also define macros like in the example. For instance, OBJECTS is a macro which lists the object
files that are required to build the complete program. The example also shows use of some of the
internal macros that make recognizes such as CC and CFLAGS and changes them. CC is a macro that
contains a string for the C compiler. It normally defaults to a compiler called cc, but for programs to run
on the ARM SBC, the compiler must be arm-none-linux-gnueabi-gcc. The makefile in Figure 11 has this
change.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 10 of 29
ww2@andrew.cmu.edu

CFLAGS is a macro used to store the set of options or flags that the C compiler should use in compiling.
The flags themselves will be discussed later. $< is a macro that is defined to be the single dependency
of the current running target.

The example also shows the use of inference rules. % is a wild card character that matches zero or
more characters. The rule, %.o: %.c, infers that an object file can be built by its corresponding source
file.

In Eclipse, all and clean are special targets. When building normally, Eclipse calls make on the all target.
When cleaning up the project, Eclipse calls make on the clean target.

Out of the flags shown in the CFLAGS macro, only –static is necessary. The purpose of the –g flag is to
allow for the code to be run through a debugger such as GDB and is thus recommended, but not
necessary. –O2 is a flag for optimization purposes. The –static flag tells the compiler to not use dynamic
linking to shared libraries. Normally, programs are compiled such that they make references to libraries
located elsewhere. At runtime, the dynamic linker is called which then loads the relevant subroutines
into the program. Part of the reason that this is done is to cut down the space taken up by the program.
However, the ARM single board computer neither has the correct libraries nor has a usable dynamic linker
because it does not have the space to store it. Therefore, programs must be statically linked or have the
relevant subroutines loaded at compile time. Although this makes the program larger, it is an
insignificant increase. The –o flag is for naming the output file. In Figure 11, the program will be named
factorial when it is compiled. The –c flag tells the compiler to assemble the source files, but not to link
them together.

Automatic building is the default setting, but should be turned off. Before building the program, click
Project on the menu bar and uncheck Build Automatically as shown in Figure 12. If this is not done, the
project will be built automatically even after cleaning. This could potentially cause confusion because
cleaning implies that all the files should be removed, but building will cause them to reappear again. Also,
sometimes building should be purposely held off until later because it could potentially take a long time
for larger projects, slowing down the development process.

Figure 12, Uncheck Build Automatically

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 11 of 29
ww2@andrew.cmu.edu

Now either click Build All in the same menu as shown in Figure 12 or right click Example
and click Build Project. If everything was done correctly, then the Project Explorer
should be similar to the one in Figure 13.

Figure 13, After building

It can be seen that the object files as well as the factorial program were created. Now this program can
be loaded onto the ARM single board computer and it should be able to run. The next tutorial will teach
how to connect the Windows machine with the ARM SBC.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 12 of 29
ww2@andrew.cmu.edu

3.2 Mounting a Windows folder from an ARM Single Board Computer

Once programs have been developed and written on Windows for the ARM SBC, they can be tested by
being executed on the SBC. Therefore, the SBC needs some way to access the compile programs. A way
to do this is to have Windows share a folder and have the SBC mount this folder as part of its file system.
The steps are as follows.

3.2.1 Creating a Shared Folder Under Windows Vista

Right click on the folder to be shared. In the menu click Share… as in Figure 14.

Figure 14, The right click menu

The window in Figure 15 will appear

Figure 15, File Sharing

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 13 of 29
ww2@andrew.cmu.edu

If only the folder creator will use the folder, then click Share to share the folder. Otherwise click the
arrow on the drop down menu and choose other users and click Add to add them. Change their
permission levels as necessary. There are three permission levels:

• Reader – Users can display the contents of the folder, open files, display attributes, and run
programs.

• Contributor – Users have all the rights of Reader, plus the ability to create new folders and files
within the shared folder and change or delete any files they have contributed to.

• Co-owner – Users have all of the rights of Contributor, plus the ability to change or delete any
files.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 14 of 29
ww2@andrew.cmu.edu

3.2.2 Creating a Shared Folder Under Windows XP

Right click on the folder to be shared. In the menu, click Sharing and Security… as in Figure 16.

Figure 16, The right click menu

The window in figure 17 will appear.

Figure 17, Folder Properties

Check the two boxes as shown in the figure and click Apply. Now this folder is
shared.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 15 of 29
ww2@andrew.cmu.edu

3.2.3 Terminal Access to the ARM SBC

There are two ways to get a terminal window on the single board computer, through serial port or
through telnet. A free client that can do both and more is PuTTY, which can be downloaded at
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html. Putty.exe is only one that is
needed. When PuTTY is opened, the window in Figure 18 will appear.

Figure 18, PuTTY

PuTTY can save sessions so that the process of configuration does not have to be done every time. Just
put a name in the text field under Saved Sessions and click Save. Click load from the list of sessions and
the configuration will be loaded automatically or double click the desired session and a terminal window
will open immediately.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 16 of 29
ww2@andrew.cmu.edu

3.2.3.1 Access ARM SBC via Serial Port

For connecting through the serial port, connect a null modem cable between one of the serial ports of the
Windows computer and the serial port of the SBC. Then click Serial in the tree view and set the options
as shown in Figure 19. These are the options needed for this particular kind of ARM single board
computer.

Figure 19, Serial configuration

Then click Session in the tree view to return to the screen in Figure 18 and then click the
Serial radio button. It should then look like Figure 20.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 17 of 29
ww2@andrew.cmu.edu

Figure 20, Serial session

Choose the correct serial line (e.g. COM1, COM2, etc), save the session if desired, and then click Open.
The terminal window will show up like in Figure 21. When asked for a login, put root. There is no
password.

Figure 21, The terminal window

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 18 of 29
ww2@andrew.cmu.edu

If nothing shows up, press Enter and the login prompt should appear. The text in Figure 21 may not
always appear

Note: If pressing Enter does not work, then it may be possible that another process or device is using the
same serial line as the SBC. This is especially true of laptops which normally do not have serial ports.
Please check the serial line properties. If there is something already using the line, either change the
serial port that the SBC uses or move that process or device to a different line. This tutorial will not go in
depth on this problem as this is not the focus and there are too many possibilities for the cause of this
problem which may need different methods to fix.

3.2.3.2 Access ARM SBC via Telnet

For connecting using telnet, the SBC needs an IP address and needs to be on a network which the
Windows computer can access. Assuming there is no other way to connect to the SBC, a router is
necessary. The SBC is DHCP enabled and thus any router which has its DHCP server enabled can give it
an IP address. Connect both the Windows computer and the SBC to the same computer. Wait for some
time so that the computers can get their IP addresses. Find the computer in the router’s DHCP client
table. It will be normally the one with no name. Copy down the associated address and make sure the
Windows computer can detect the SBC by using the ping command in the Command Prompt. An
example is shown in Figure 22.

Figure 22, The ping command

If above results when pinging to the SBC, then the Windows computer should be able to connect. Then
in PuTTY, click the Telnet radio button and type in the address, save if the session if desired, and click
Open. See Figure 23 for an example.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 19 of 29
ww2@andrew.cmu.edu

Figure 23, Telnet configuration

The terminal will take some time to load and then the login prompt should appear similarly to the one for
the serial connection. Again, the login name is root. There is no password.

3.2.4 Mounting the shared folder

Now that a shared folder (refer to step 1) has been created and the Windows machine can connect to the
console on the ARM SBC, mounting is the final step to start running programs compiled on the Windows
machine.

For mounting, the Common Internet Network Interface (CIFS) will be used. As the name suggests,
networking will be required and thus the Windows machine needs an IP address that the SBC can access.
This can be done simply by putting the Windows machine and the SBC on the same network. If
connecting to a terminal was achieved through telnet, this is already done. If it was achieved through
serial port, there are two ways to do it. One requires a crossover cable and is somewhat complicated.
The other way is to follow the instructions for setting up the telnet connection. Connect both machines
to the router and make sure they have connectivity. Now use either the DHCP table of the router or the
ipconfig command in the Command Prompt to find the IP address of the Windows machine. An example
run of this command is shown in Figure 24.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 20 of 29
ww2@andrew.cmu.edu

Figure 24, ipconfig

Copy down the IP address located in the network that the SBC is in. Now in the SBC, type the below
command if on Vista:

mount –t cifs //<IP address>/<share name> -o username=<username>,password=<password> /mnt

Where <IP address> is the IP address of the Windows machine, <share name> is the path to the folder
in Vista (e.g. C:\Users\Example, share name is Users/Example) or the share name chosen in Figure 17 in
XP, <username> is the username of the user who wishes to access this folder, <password> is the user’s
password. The password is in clear text. If this is not secure enough, then type in

mount –t cifs //<IP address>/<share name> -o username=<username> /mnt

The terminal will then prompt for a password in hidden text. If the username is not specified like below:

What this command does is that it mounts the folder in the /mnt directory. Thus the files can be
accessed by going to that directory on the SBC. A different directory can be used if desired. The /mnt
directory is meant for temporary mounts. To unmount the folder, use the below command:

umount /mnt

Now for an example, the factorial program created in the Sourcery G++ Lite toolchain tutorial will be
placed into an example shared folder. The folder will be mounted by the SBC and the code will be
executed. Then the folder will be unmounted.

First, place the factorial binary into the shared folder as shown in Figure 25.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 21 of 29
ww2@andrew.cmu.edu

Figure 25. factorial in the shared folder

Then, open a terminal window and enter in the mount command, change to the /mnt directory, execute
the program, and unmount. Figure 26, shows an example terminal run from Telnet.

Figure 26, Example run

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 22 of 29
ww2@andrew.cmu.edu

There is an extra command used in this example called ls. ls is a command to list all the files and folders
in a directory and is very similar to dir in a Windows Command Prompt. ls was used in this example to
demonstrate that mounting and unmounting were successful. After mounting, the factorial program was
listed. After unmounting, the directory became empty. One thing to note is that the program was called
using ./factorial (i.e. the absolute path) rather than just simply factorial. Unlike Windows, Linux does
NOT check for the program in the current directory. It only checks for programs in the directories listed
in its PATH variable. Another thing to note is that unmounting cannot occur while still in the directory.
Hence, this is why the directory was changed to the parent directory before calling umount. Now, one
can run programs compiled on a Windows machine using a cross development tool on the ARM SBC.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 23 of 29
ww2@andrew.cmu.edu

4 Appendix I: Remote debugging with gdbserver and
Eclipse in Windows

As stated above in section 3.1, if a program was compiled with the –g option, then it is possible debug it
with a debugger such as gdb (GNU Debugger). To learn more about gdb and the various functions it
provides, please go to http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html. The Sourcery G++
Lite comes with its own version of gdb called arm-none-linux-gnueabi-gdb which can be used to debug
programs using this toolchain. Unfortunately, as Windows does not run on an ARM processor
architecture, it cannot natively run ARM code. To solve this problem, it is possible to have an ARM based
computer (such as the SBC) serve the program through a program called gdbserver and do debugging
remotely. Basically how this works is that a debugger remotely connects to the ARM computer and has
the ARM computer perform the execution of the program for the debugger rather its host computer.
Figure 27 shows an example run of gdbserver.

Figure 27, gdbserver

gdbserver takes at least 2 arguments. The first argument it takes is the location of gdb. This can be a
combination of an IP address and a port as shown above, or a different port (such as a serial port). The
second argument is the program to serve. Any arguments that follow are used by the program being
debugged. As it shows, gdbserver waits and listens for a connection from an instance of gdb. One thing
to note is that gdbserver cannot be stop through the means of pressing CTRL+C. gdbserver terminates
either by ending a debugging session or using a command called kill through another terminal.

Eclipse can be used in tandem with gdb to provide a graphical debugging environment and can also
interact with gdbserver. To set this up, in Eclipse, go to Run->Run Configurations (or Debug
Configurations) to see the screen in Figure 28.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 24 of 29
ww2@andrew.cmu.edu

Figure 28, Run Configurations

Double-click C/C++ Application to create a new configuration. Give it a name. Note that the program
has to be on both the ARM computer and the machine running Eclipse. This is because the symbol table
and various other bits of debugging information are loaded from the local copy of the program. Thus,
choose the project to debug under the Main tab. Then choose the program to debug. In the case that
the program’s file extension is not .exe, the program must be found through Browse... Otherwise, the
program can be found using Search Project… Figure 29 shows how to set it up for the example created in
section 3.1.

Figure 29, Configuring the Main tab

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 25 of 29
ww2@andrew.cmu.edu

Now click the Debugger tab. Change the option in the dropdown menu to gdbserver Debugger. Choose
a function to stop at if desired (if unchecked, the program will attempt to run to completion). Change
the debugger to arm-none-linux-gnueabi-gdb. The Shared Libraries tab is for adding the shared libraries
that gdb should use. The assumption is that no shared libraries are used and thus the Shared Libraries
tab will be skipped. Move to the Connection tab. Change the connection type to the one being used. If
using TCP, type in the IP address and port number of the computer where gdbserver is executing. Click
Apply afterwards to save the configuration. Figure 30 shows an example of how the Main and
Connection tabs under the Debugger tab should look.

Figure 30, Configuring the Debugger tab

If gdbserver is running, then it is now possible to start the remote debugging process. If in Debug
Configurations, choose the correct debug configuration and click Debug. Otherwise, click the arrow right
of the “bug icon” in the menu bar at the top and choose the correct debug configuration (refer to Figure
6). The message box in Figure 31 should pop up.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 26 of 29
ww2@andrew.cmu.edu

Figure 31, Changing Perspective

Eclipse asks if a switch should be made to the Debug perspective. Debug perspective gives many useful
tools such as a register viewer and a memory viewer. It is recommended to click Yes and check the box
to remember the decision. If Yes is clicked, the screen will change to something similar to the one in
Figure 32.

Figure 32, Debug Perspective

As shown in Figure 32, other than the tool mentioned above, there is a disassembly of the code where
one can choose to move to different lines or run up to specific lines of assembly. The variables that are
in scope are also shown. In this configuration a breakpoint was set at main. More breakpoints can also
be set as well by double clicking the space on the left of the code. In the upper left hand corner under

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 27 of 29
ww2@andrew.cmu.edu

the Debug tab is another place that can be used to step through the code. To have the code step until
the next breakpoint, either click the Pause/Play icon or press F8. Once the code has terminated, the
screen should look similar to Figure 33.

Figure 33, Program Termination

If one looks at the terminal session, it should look similar to Figure 34.

Figure 34, gdbserver Termination

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 28 of 29
ww2@andrew.cmu.edu

As shown in the figures, the printing to the console occurs on the ARM computer and not the console in
Eclipse. Also shown is that gdbserver has terminated. To debug the program again, run gdbserver again.

One final note about the –g option. As stated before, this flag is needed for use with gdb. This is
because this option tells the compiler to add extra information needed to debug effectively. However,
also noted above is the fact that there needs to be two copies of the program, one on the machine
running Eclipse and one on the ARM machine. gdb only needs to look at the local copy to get the
debugging information and thus the copy on the ARM machine does not need it. If it is necessary to
conserve space on the ARM machine, compile a copy of the program without the –g option and put that
copy on the ARM machine. This copy will not have the debugging information and therefore a bit smaller.

5 Appendix II: Internet Access While on Multiple Networks in
Windows

The mounting tutorial asks one to place the SBC on the same network as the Windows machine. This
can be as simple as connecting the SBC to router that is currently being used by Windows machine.
However, sometimes it is easier to have the Windows machine connect to two different networks at the
same time, one that it normally is connected to and a network specifically for communication between
the Windows machine and the SBC. Such is the case is when the Windows machines is connected
wirelessly to a router for its Internet connection and the router is located relatively far away from the
computer. It may be easier to get another router in the same area as the computer and connect the two
on this router. However, this could cause a problem with the Windows’ machine’s Internet connection.
When on multiple networks, Windows only tries to find Internet access on the network with the lowest
metric or the network that Windows believes to be “closest.” The problem is that Windows automatically
assigns a lower metric to a wired network as compared to a wireless one and thus the Internet
connection on the wireless network is not used.

To deal with this problem, metrics have to be manually set, specifically the network with the Internet
connection should be set with a very small metric. To do this, go to the properties of the network device
with an Internet connection. Click on TCP/IP (TCP/IPv4 on Vista) in the list and click Properties. Then in
the General tab, click Advanced… At the bottom of the IP Settings tab, uncheck Automatic metric and
put a small number as the metric (1 is a good choice). Figure 35 shows the window.

 Install and Use the Sourcery G++ Lite Toolchain
With Eclipse in Windows for Cross Development with ARM SBC

William Wang 29 of 29
ww2@andrew.cmu.edu

Figure 35, Setting the metric

After setting this metric, the computer should now have Internet access. In general, the metric should
not need to be changed. It is recommended to check Automatic metric when this set up is not being
used.

