
The Linux 2.4 Kernel’s Startup
Procedure
William Gatliff

1. Overview

This paper describes the Linux 2.4 kernel’s startup process, from the moment the kernel gets control of
the host hardware until the kernel is ready to run user processes. Along the way, it covers the
programming environment Linux expects at boot time, how peripherals are initialized, and how Linux
knows what to do next.

2. The Big Picture

Figure 1is a function call diagram that describes the kernel’s startup procedure. As it shows, kernel
initialization proceeds through a number of distinct phases, starting with basic hardware initialization
and ending with the kernel’s launching of/bin/init and other user programs. The dashed line in the
figure shows thatinit() is invoked as a kernel thread, not as a function call.

Figure 1. The kernel’s startup procedure.

Figure 2is a flowchart that provides an even more generalized picture of the boot process, starting with
the bootloader extracting and running the kernel image, and ending with running user programs.

Figure 2. The kernel’s startup procedure, in less detail.

The following sections describe each of these function calls, including examples taken from the Hitachi
SH7750/Sega Dreamcast version of the kernel.

3. In The Beginning...

The Linux boot process begins with the kernel’s_stext function, located in
arch/ <host >/kernel/head.S . This function is called_start in some versions. Interrupts are
disabled at this point, and only minimal memory accesses may be possible depending on the capabilities
of the host hardware.

1

The Linux 2.4 Kernel’s Startup Procedure

The code to invoke_stext is found in the host’s bootloader, code that is technically not part of Linux
itself. In most kernel implementations the bootloader is a standalone program that drags the kernel image
from the storage media (flash memory, hard disk, floppy, CD, etc.) into RAM, decompresses it, and
jumps to_stext .

The bootloader extracts the compressed kernel image to a predefined location that is appropriate for the
target architecture;_stext is, by convention, located 0x1000 bytes after the begininning of the image.

In the Hitachi SH Linux kernel, the linker places the start of the kernel image at the address
0x80000000 and defines a symbol called_text there. Once the kernel image is decompressed, the
bootloader jumps to the address(_text + 0x1000) . Figure 3shows the relevent portions of the
bootloader’s command file and startup code. The excerpts shown are taken from
arch/sh/vmlinux.lds.S andarch/sh/boot/compressed/head.S .

Figure 3. The Hitachi SH kernel’s linker configuration script and bootloader code.

/* linker configuration script */
SECTIONS
{

. = 0x80000000 + CONFIG_MEMORY_START + 0x1000;
_text = .; /* Text and read-only data */
...

}

/* bootloader code */
startup:

...

/* Jump to the start of the decompressed kernel */
mov.l kernel_start_addr, r0
jmp @r0
nop

kernel_start_addr:
.long _text+0x1000

4. The _stext Function

The function_stext (called_start in some versions) is usually located in
arch/ <host >/kernel/head.S .

_Stext sets the initial stack pointer and performs any other functions necessary to create a minimal C
runtime environment, like clearing the BSS memory section._Stext then jumps tostart_kernel() .

2

The Linux 2.4 Kernel’s Startup Procedure

Figure 4shows part of the code for the Hitachi SH version of_stext .

Figure 4. The Hitachi SH’s _stext function.

ENTRY(_stext)
! Initialize Status Register
mov.l 1f, r0 ! MD=1, RB=0, BL=0, IMASK=0xF
ldc r0, sr
! Initialize global interrupt mask
mov #0, r0
ldc r0, r6_bank
!
mov.l 2f, r0
mov r0, r15 ! Set initial r15 (stack pointer)
mov #0x20, r1 !
shll8 r1 ! r1 = 8192
sub r1, r0
ldc r0, r7_bank ! ... and init_task

! Initialize fpu
mov.l 7f, r0
jsr @r0

nop

! Enable cache
mov.l 6f, r0
jsr @r0
nop
! Clear BSS area
mov.l 3f, r1
add #4, r1
mov.l 4f, r2
mov #0, r0

9: cmp/hs r2, r1
bf/s 9b ! while (r1 < r2)
mov.l r0,@-r2
! Start kernel
mov.l 5f, r0
jmp @r0

nop

.balign 4
1: .long 0x400000F0 ! MD=1, RB=0, BL=0, FD=0, IMASK=0xF
2: .long SYMBOL_NAME(stack)
3: .long SYMBOL_NAME(__bss_start)
4: .long SYMBOL_NAME(_end)
5: .long SYMBOL_NAME(start_kernel)
6: .long SYMBOL_NAME(cache_init)
7: .long SYMBOL_NAME(fpu_init)

3

The Linux 2.4 Kernel’s Startup Procedure

5. The start_kernel() Function

Start_kernel() is located inkernel/init/main.c .

Thestart_kernel() function orchestrates all of Linux’s startup procedure. Prior to invoking all the
other functions needed to get the kernel into an operational state,start_kernel() prints the familiar
Linux startup banner and parses the command line.

The following sections describe each of the functions called bystart_kernel() , in the order of their
invocation. The code inFigure 5shows the first few lines ofstart_kernel() .

Figure 5. Thestart_kernel() function.

asmlinkage void __init start_kernel(void)
{

char * command_line;
unsigned long mempages;
extern char saved_command_line[];

lock_kernel();
printk(linux_banner);
setup_arch(&command_line);
printk("Kernel command line: %s\n", saved_command_line);
parse_options(command_line);
trap_init();
init_IRQ();
...

6. The setup_arch() Function

Setup_arch() is usually located inarch/ <host >/kernel/setup.c .

Thesetup_arch() function is responsible for initial, machine-specific initialization procedures. These
include setting up themachine vectorfor the host, and determining the locations and sizes of available
memory.Setup_arch() also initializes a basic memory allocator calledbootmemto use during the boot
process, and for most processors, callspaging_init() to enable the host’s Memory Management Unit
(MMU).

The host’smachine vectoris a data structure containing the name of the host, and function pointers for
host-specific functions to read and write i/o ports. The machine vector reduces the number of
configuration points in the kernel, by allowing host-specific operations in generic kernel code to use a
common API.

4

The Linux 2.4 Kernel’s Startup Procedure

7. The trap_init() Function

Trap_init() is usually located inarch/ <host >/kernel/traps.c .

Trap_init() initializes some of the processor’s interrupt handling capability. In particular, it aims the
processors interrupt vector table pointer to the address of the actual vector table, if necessary. Interrupts
are not enabled until later on, just before thecalibrate_delay() function is run.

The code inFigure 6showstrap_init() for the Hitachi SH.

Figure 6. The trap_init() function.

void __init trap_init(void)
{

extern void *vbr_base;
extern void *exception_handling_table[14];

exception_handling_table[12] = (void *)do_reserved_inst;
exception_handling_table[13] = (void *)do_illegal_slot_inst;

asm volatile("ldc %0, vbr"
: /* no output */
: "r" (&vbr_base)
: "memory");

}

8. The init_IRQ() Function

Init_IRQ() is usually located inarch/ <host >/kernel/irq.c . The Hitachi SH version is in
arch/ <host >/kernel/irq_ipr.c .

Init_IRQ() initializes the hardware-specific side of the kernel’s interrupt subsystem. Interrupt
controllers are initialized here, but their input lines are not enabled until drivers and kernel modules call
request_irq() .

9. The sched_init() Function

Sched_init() is located inkernel/sched.c .

Sched_init() initializes the kernel’spidhash[] table, a lookup table for quickly mapping process
IDs to process descriptors used by the kernel. Thesched_init() function then initializes the vectors
and bottom-half handlers used by the kernel’s various internal timers.

5

The Linux 2.4 Kernel’s Startup Procedure

10. The softirq_init() Function

Softirq_init() is located inkernel/softirq.c .

Softirq_init() initializes the kernel’ssoftirqsubsystem. Softirqs are the 2.4 kernel’s replacement for
bottom-half handlers used in version 2.2.x, and are used to improve interrupt handling performance for
things like network packet transmission and reception.

Softirqs are managed by the kernel’sksoftirqd thread.

11. The time_init() Function

Time_init() is usually located inarch/ <host >/kernel/time.c .

The time_init() function initializes the host’s system tick timer hardware. It installs the timer’s
interrupt handler, and configures the timer to produce a periodic tick. The tick interrupt handler is usually
calleddo_timer_interrupt() .

A portion of the Hitachi SH version oftime_init() is shown inFigure 7. The timer interrupt handler
timer_interrupt() (which callsdo_timer_interrupt()) is installed, then after determining the
proper clock frequency (not shown), the code starts the chip’s TMU0 periodic timer.

Figure 7. An excerpt from the Hitachi SH’s time_init() function.

static struct irqaction irq0 = {timer_interrupt, SA_INTERRUPT, 0,
"timer", NULL, NULL};

void __init time_init(void)
{

unsigned long interval;

...

setup_irq(TIMER_IRQ, &irq0);

...

interval = (module_clock/4 + HZ/2) / HZ;
printk("Interval = %ld\n", interval);

...

/* Start TMU0 */
ctrl_outb(0, TMU_TSTR);
ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);

6

The Linux 2.4 Kernel’s Startup Procedure

ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
ctrl_outl(interval, TMU0_TCOR);
ctrl_outl(interval, TMU0_TCNT);
ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);

}

12. The console_init() Function

Console_init() is located indrivers/char/tty_io.c .

Theconsole_init() function performs early initialization of the kernel’s serial console device, if one
is configured for use. This console device is used to display kernel boot messages before the formal,
complete virtual console system is initialized.

Once some basic TTY information is recorded,console_init() calls a host-specific console
initialization function likesci_console_init() , which uses the Hitachi SH’sSCI peripheral as a
serial console.

In most cases, the kernel’s console device is the host’s VGA display hardware, or a serial port. By
creating your own terminal initialization function forconsole_init() , however, just about any
primitive interface is possible. Consoles that talk to network hosts can’t be used here, since the kernel’s
networking subsystem has not yet been initialized.

13. The init_modules() Function

Init_modules() is located inkernel/module.c .

The init_modules() function initializes the kernel module subsystem’snsyms parameter.

14. The kmem_cache_init() Function

Kmem_cache_init() is located inmm/slab.c . This function initializes the kernel’s SLAB memory
management subsystem. SLABs are used for dynamic memory management of internal kernel structures.

15. The calibrate_delay() Function

Calibrate_delay() is located ininit/main.c .

7

The Linux 2.4 Kernel’s Startup Procedure

Thecalibrate_delay() function performs the kernel’s infamousBogoMips(tm)calculation. A
BogoMipis a unitless number that calibrates Linux’s internal delay loops, so that delays run at roughly
the same rate on processors of different speeds.

The BogoMips calculation depends on the value ofjiffies , the number of timer ticks since system
startup. If the system tick is not working, the BogoMips calculation will freeze.

16. The mem_init() Function

Mem_init() is located inarch/ <host >/mm/init.c .

Mem_init() initializes the kernel’s memory management subsystem. It also prints a tabulation of all
available memory and the memory occupied by the kernel.

17. The kmem_cache_sizes_init() Function

Kmem_cache_sizes_init() is located inmm/slab.c .

Thekmem_cache_sizes_init() function finishes the SLAB subsystem initialization started by
kmem_cache_init() .

18. The fork_init() Function

Fork_init() is located inkernel/fork.c .

Fork_init() initializes the kernel’smax_threads andinit_task variables. This information is used
by the kernel duringfork() system calls.

19. The proc_caches_init() Function

Proc_caches_init() is located inkernel/fork.c .

Proc_caches_init() initializes the SLAB caches used by the kernel. This is analogous to initializing
malloc() -style heaps in a user program.

8

The Linux 2.4 Kernel’s Startup Procedure

20. The vfs_caches_init() Function

Vfs_caches_init() function is located infs/dcache.c .

Vfs_caches_init() initializes the SLAB caches used by the kernel’s Virtual File System subsystem.

21. The buffer_init() Function

Buffer_init() is located infs/buffer.c .

Buffer_init() initializes the kernel’s buffer cache hash table. The buffer cache holds blocks of
adjacent disk data, and is used to improve the performance of reads and writes to hard disks and other
slow media.

22. The page_cache_init() Function

Page_cache_init() function is located inmm/filemap.c .

Page_cache_init() initializes the kernel’s page cache subsystem. Page caches hold streams of file
data, and help improve performance when reading and writing user files.

23. The signals_init() Function

Signals_init() is located inkernel/signal.c .

Signals_init() initializes the kernel’s signal queue. Signals are a form of interprocess
communication.

24. The proc_root_init() Function

Proc_root_init() is located infs/proc/root.c .

Proc_root_init() initializes Linux’s /proc filesystem, and creates several standard entries like
/proc/bus and/proc/driver .

9

The Linux 2.4 Kernel’s Startup Procedure

25. The ipc_init() Function

Ipc_init() is located inipc/util.c .

Ipc_int() initializes the resources that implement SystemV-style interprocess communication,
including semaphores (initialized in the subfunctionsem_init()), messages (msg_init()) and shared
memory (shm_init()).

26. The check_bugs() Function

Check_bugs() is located somewhere in the host-specific portions of the kernel source tree. For some
versions, it is declared ininclude/asm- <host >/bugs.h , so that it can be statically included in
start_kernel() .

Thecheck_bugs() function is where host-specific code can check for known processor errata, and
implement workarounds if possible. Some implementations of this function check for FPU bugs,
opcodes that are not supported by the whole processor family, and buggy opcodes.

Check_bugs() also usually callsidentify_cpu() , to detect which version of a processor family is in
use. For example, the x86 kernel’sidentify_cpu() can identify and apply runtime fixes for
Coppermine, Celeron, and Pentium Pro/II/III processors, as well as chips from non-Intel vendors like
AMD and Transmeta.

27. The smp_init() Function

Smp_init() is defined ininit/main.c .

If the host machine is an SMP-capable x86 processor,smp_init() calls
IO_APIC_init_uniprocessor() to set up the processor’s APIC peripheral. For other processor
families,smp_init() is defined as a do-nothing.

28. The rest_init() Function

Rest_init() is located ininit/main.c .

Rest_init() frees the memory used by initialization functions, then launchesinit() as a kernel
thread to finish the kernel’s boot process.

10

The Linux 2.4 Kernel’s Startup Procedure

29. The init() Function

Init() is located ininit/main.c .

Init() completes the kernel’s boot process by callingdo_basic_setup() to initialize the kernel’s
PCI and network features. The remaining memory allocated for initialization is discarded, scheduling is
enabled, the standard input, output and error streams are created, andprepare_namespace() is called
to mount the root filesystem.

With the root filesystem in place,init() runsexecve() to launch the program/sbin/init , if it
exists. If a valid program name is provided with theinit= <programname > command line option,
init() will execve() that program instead. If a suitable startup program cannot be found (the kernel
also tries "/bin/init" and "/bin/sh"), the kernel panics and halts.

The code forinit() is shown inFigure 8.

Figure 8. The init() function.

static int init(void * unused)
{

lock_kernel();
do_basic_setup();

prepare_namespace();

free_initmem();
unlock_kernel();

if (open("/dev/console", O_RDWR, 0) < 0)
printk("Warning: unable to open an initial console.\n");

(void) dup(0);
(void) dup(0);

if (execute_command) execve(execute_command,argv_init,envp_init);
execve("/sbin/init", argv_init, envp_init);
execve("/bin/init",argv_init,envp_init);
execve("/bin/sh",argv_init,envp_init);
panic("No init found. Try passing init= option to kernel.");

}

30. The do_initcalls() Function

Do_initcalls() is located ininit/main.c .

11

The Linux 2.4 Kernel’s Startup Procedure

Do_initcalls() runs the list of functions registered with the__initcall attribute, which usually
only applies to compiled-in kernel modules and device drivers. The__initcall attribute eliminates the
need for a hand-maintained list of device driver initialization functions.

The__initcall mechanism works by creating a constant function pointer in a memory section called
.initcall.init , that points to the initialization function itself. When the kernel image is linked, the
linker organizes all of these function pointers into a single memory section, anddo_initcalls()

invokes them in the order they appear there.

The macros and type definitions that implement the__initcall attribute are shown inFigure 9; the
code fordo_initcalls() is shown inFigure 10.

Figure 9. The__initcall macros and typedefs.

typedef int (*initcall_t)(void);
typedef void (*exitcall_t)(void);

#define __initcall(fn) \
static initcall_t __initcall_##fn __init_call = fn

#define __init_call __attribute__ ((unused,__section__ (".initcall.init")))

Figure 10. Thedo_initcalls() function.

extern initcall_t __initcall_start, __initcall_end;

static void __init do_initcalls(void)
{

initcall_t *call;

call = &__initcall_start;
do {

(*call)();
call++;

} while (call < &__initcall_end);

flush_scheduled_tasks();
}

31. The mount_root() Function

Mount_root() is located infs/super.c .

Mount_root() tries to mount the root filesystem. The identity of the root filesystem is provided as a
kernel option during boot, which in workstation environments is typically the hard disk device and

12

The Linux 2.4 Kernel’s Startup Procedure

partition containing the system’s root directory. (The root partition isn’t necessarily the same as the
location of the now almost-booted kernel image.)

Linux can mount root filesystems from hard disks, floppies, and over a network NFS connection to
another machine. Linux can also use aramdiskas a root filesystem.Mount_root() will try one or more
of these sources before giving up and causing a kernel panic.

32. The /sbin/init Program

The program/sbin/init (hereafter called justinit) is the parent of all user processes.Init ’s job is to
create other user processes by following the instructions found in the file/etc/inittab . Technically,
the kernel itself has completely booted beforeinit runs--- it has to, sinceinit is a user process. Despite
this, most considerinit to be "part of the boot process".

The inittab script usually has entries to tellinit to run programs likemingetty that provide login
prompts, and to run scripts like those found in/etc/rc.d/rc3.d that in turn start still more processes
and services likexinetd, NFS, andcrond. As a result, a typical Linux workstation environment may
have as many as 50 different processes running before the user even logs in for the first time.

Workstations usually modify system behavior by modifying the contents ofinittab , or the contents of
the subdirectories under/etc/rc.d . This capability makes it easy to make large-scale changes to a
system’s runtime behavior without needing to recompile (or in some cases, even reboot) the system. The
conventions followed byinittab and/etc/rc.d scripts are well documented and pervasive (they
predate Linux by a number of years), and lend themselves to automated modification during installation
of user software.

To change the final stages of an embedded Linux startup process, you can either provide a modified
inittab and runinit , or you can replaceinit entirely, with an application of your own design--- perhaps
your embedded application itself. You can even experiment a bit, by providing the names of programs
like /bin/sh in the kernel’sinit= command line parameter of a Linux workstation. The kernel will
simply run the specified program at the end of the boot process, instead ofinit .

Figure 11shows an excerpt from a typicalinittab file, that runs the scripts in
/etc/rc.d/rc.sysinit and/etc/rc.d/rc3.d , and launches a fewmingetty’s to provide login
prompts.

Figure 11. Excerpt from a typical inittab .

id:3:initdefault:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0

13

The Linux 2.4 Kernel’s Startup Procedure

l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Things to run in every runlevel.
ud::once:/sbin/update

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

33. Conclusion

Far from the mysterious entity that many claim it is, Linux’s boot process is straightforward and easy to
follow after spending a few minutes looking at the source code. Knowing Linux’s boot process is
important, because in embedded settings the generic boot procedure must almost always be modified to
meet the needs of the target application. This document should help.

34. About the Author

Bill Gatliff is a freelance embedded developer and training consultant with almost ten years of
experience of using GNU and other tools for building embedded systems. His product background
includes automotive, industrial, aerospace and medical instrumentation applications.

Bill specializes GNU-based embedded development, and in using and adapting GNU tools to meet the
needs of difficult development problems. He welcomes the opportunity to participate in projects of all
types.

Bill is a Contributing Editor for Embedded Systems Programming Magazine
(http://www.embedded.com/), a member of the Advisory Panel for the Embedded Systems Conference
(http://www.esconline.com/), maintainer of the Crossgcc FAQ, creator of the gdbstubs
(http://sourceforge.net/projects/gdbstubs) project, and a noted author and speaker.

14

The Linux 2.4 Kernel’s Startup Procedure

Bill welcomes feedback and suggestions. Contact information is on his website, at
http://www.billgatliff.com.

15

